
# E級アンプの勘所

©2020 JA5FP

### 1. LF 帯用 E 級アンプの構成

80%を超える高能率である E 級アンプは、LF 帯高出力段で威力があります。右図のように FET スイッチとフライホイルで構成します。LC インピーダンス変換回路は高調波抑圧効果もあります。



E級の基本回路と付加Z変換回路

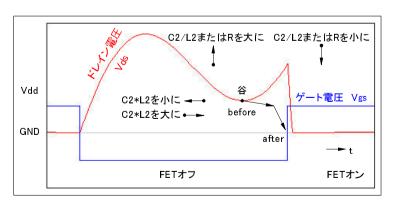
## 2. 設計式

LC 定数の計算式は WA1HQC から提供されています (QEX Jan/Feb 2001) が、これを基にした筆者の実験結果から次の計算法を推薦します。(星野氏の助言を受けて、数値を修正)

 $Q_2=2.0$  を選択します。電源電圧  $V_{dd}$ および RF 出力  $P_o$  として (実部品ではない) 仮想抵抗  $R_2=0.38888V_{dd}^2/P_o$ を求めておきます。スイッチング角周波数  $\omega$  に対する  $C_1$ 、 $C_2$ 、 $L_1$ 、 $L_2$  は次式で計算します。

$$C_1 = 0.21994 \frac{1}{\omega R_2}$$
  $C_2 = 10 \frac{1}{\omega R_2}$   $L_1 \ge 43.57 \frac{R_2}{\omega}$   $L_2 = \frac{Q_2 R_2}{\omega}$ 

 $R_2$  を負荷抵抗  $R_3$  に変換するために、 $Q_3=\sqrt{R_3/R_2-1}$  を求めておきます。 $C_3$ 、 $L_3$  は次式で計算します。これで E 級アンプ本体と出力のインピーダンスが整合します。


$$C_3 = \frac{Q_3}{\omega R_2} \qquad L_3 = \frac{Q_3 R_2}{\omega}$$

(注) 読者のご指摘を受け、式の一部訂正 2013/9/19

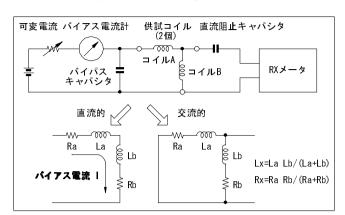
### 3. 調整法

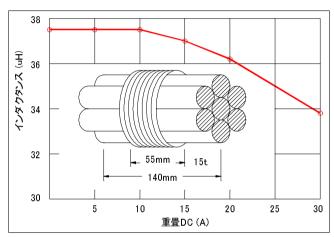
アンプが最高能率を発揮するにはドレイン電圧  $V_{ds}$  をオシロ観測して、適正 LC となるよう調整します。 $L_2$ と  $L_3$  は実部品では 1 個に統合できますが値は単純に  $L_2+L_3$  とはならないので、若干の調整が必須です。

調整の要領は、右図の $V_{ds}$ の谷に注目して、これが時間軸では FET オンのタイミングとなり、振幅軸ではゼロボルトとなるような $L_2$  定数を見つけます。 $L_2$  の調整だけでは駄目ならば、 $C_2/L_2$  を変えてみます。



この調整が完了していると、不測の事態で  $R_3$  が短絡または開放されてもドレイン電流が低下するだけで、FET の破壊の心配はありません。


# 4. 大電流 RFC


 $L_1$  はドレインの大電流で磁気飽和しないよう配慮が必要です。

フェライトコア入りコイルの電流に対するインダク タンス低下のデータがなければ、個別に測定します。

測定方法は右図のように、2個の被測定コイルを用意 し直流バイアスは直列に供 給し、高周波成分は並列状 態で行います。

ちなみにフェライト棒 7 本での測定例は、右図のと おりです。





以上